Inflammatory cells as a source of airspace extracellular superoxide dismutase after pulmonary injury.
نویسندگان
چکیده
Extracellular superoxide dismutase (EC-SOD) is an antioxidant abundant in the lung. Previous studies demonstrated depletion of lung parenchymal EC-SOD in mouse models of interstitial lung disease coinciding with an accumulation of EC-SOD in airspaces. EC-SOD sticks to the matrix by a proteolytically sensitive heparin-binding domain; therefore, we hypothesized that interstitial inflammation and matrix remodeling contribute to proteolytic redistribution of EC-SOD from lung parenchyma into the airspaces. To determine if inflammation limited to airspaces leads to EC-SOD redistribution, we examined a bacterial pneumonia model. This model led to increases in airspace polymorphonuclear leukocytes staining strongly for EC-SOD. EC-SOD accumulated in airspaces at 24 h without depletion of EC-SOD from lung parenchyma. This led us to hypothesize that airspace EC-SOD was released from inflammatory cells and was not a redistribution of matrix EC-SOD. To test this hypothesis, transgenic mice with lung-specific expression of human EC-SOD were treated with asbestos or bleomycin to initiate an interstitial lung injury. In these studies, EC-SOD accumulating in airspaces was entirely the mouse isoform, demonstrating an extrapulmonary source (inflammatory cells) for this EC-SOD. We also demonstrate that EC-SOD knockout mice possess greater lung inflammation in response to bleomycin and bacteria when compared with wild types. We conclude that the source of accumulating EC-SOD in airspaces in interstitial lung disease is inflammatory cells and not the lung and that interstitial processes such as those found in pulmonary fibrosis are required to remove EC-SOD from lung matrix.
منابع مشابه
Leukocyte-derived extracellular superoxide dismutase does not contribute to airspace EC-SOD after interstitial pulmonary injury.
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is known to limit inflammation and fibrosis following numerous pulmonary insults. Previous studies have reported a loss of full-length EC-SOD from the pulmonary parenchyma with accumulation of proteolyzed EC-SOD in the airspace after an interstitial lung injury. However, following airspace only inflam...
متن کاملExtracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM.
Extracellular superoxide dismutase (ECSOD or SOD3) is highly expressed in lungs and functions as a scavenger of O(2)(*-). ECM fragmentation, which can be triggered by oxidative stress, participates in the pathogenesis of chronic obstructive pulmonary disease (COPD) through attracting inflammatory cells into the lungs. The level of SOD3 is significantly decreased in lungs of patients with COPD. ...
متن کاملPrevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase.
Reactive oxygen and nitrogen species such as superoxide and nitric oxide are released into the extracellular spaces by inflammatory and airway epithelial cells. These molecules may exacerbate lung injury after influenza virus pneumonia. We hypothesized that enhanced expression of extracellular superoxide dismutase (EC SOD) in mouse airways would attenuate the pathological effects of influenza p...
متن کاملRole of extracellular superoxide dismutase in bleomycin-induced pulmonary fibrosis.
Bleomycin administration results in well-described intracellular oxidative stress that can lead to pulmonary fibrosis. The role of alveolar interstitial antioxidants in this model is unknown. Extracellular superoxide dismutase (EC-SOD) is the primary endogenous extracellular antioxidant enzyme and is abundant in the lung. We hypothesized that EC-SOD plays an important role in attenuating bleomy...
متن کاملSynergistic protection against hyperoxia-induced lung injury by neutrophils blockade and EC-SOD overexpression
BACKGROUND Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory cell and molecular biology
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2006